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Associated Symplectic and Co-symplectic Structures 
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A co-symplectic structure on the cotangent bundle T*X of an arbitrary manifold 
X is defined, and the notion of associated symplectic and co-symplectic structures 
is introduced. By way of example, the two-dimensional case is considered in 
some detail. The general case is investigated, and some implications of these 
results for polarizations in geometric quantization are considered. 

1. INTRODUCTION 

In a recent article (Frescura and Lubczonok, 1990), we introduced a 
new geometric structure which we proposed to call eo-sympleetie geometry. 
This structure is based on a symmetric bilinear form of signature zero and 
leads to a geometry that is, in many respects, analogous to the symplectic 
geometry. Its usefulness lies principally in the fact that it provides scope 
for the geometrization of  a number of familiar structures in physics which 
are not so easily amenable by the methods of symplectic geometry. These 
include the angular momentum operators of quantum theory, the Dirac 
operators in relativistic quantum mechanics, and the fermionic creation and 
annihilation operators of  quantum field theory. It is anticipated that, in 
conjunction with the more familiar symplectic geometry, the co-symplectic 
geometry will go some way to providing the tools necessary for a full 
geometrization of physics. 

In our previous article, we investigated the geometry of co-symplectic 
vector spaces. Effectively, therefore, we have studied only the local proper- 
ties of the co-symplectic geometry. It is well known, however, that even the 
most rudimentary physical systems give rise to nontrivial global structures 
that strongly influence their properties, stability, and long-term behavior. 
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Any credible geometrization will therefore have to be based, not on the 
trivial local geometry examined thus far, but on some nontrivial globaliz- 
ation of it. Accordingly, we propose in this paper to extend the ideas 
contained in our previous article, and to examine some aspects of the 
geometry of co-symplectic manifolds. 

The natural setting for mechanical systems in both classical and quan- 
tum physics is not the configuration space, but the phase space, or some 
extension of  it. The co-symplectic structures that are principally of interest 
to us are thus those that can be introduced into the cotangent bundle of 
some suitably chosen manifold, or some construct on the cotangent bundle. 
In this paper, therefore, we concentrate mainly on these. 

The coexistence of spin and Hamiltonian structures in quantum theory 
and in quantum field theory (Berezin, 1966, 1987), and also in some recently 
proposed classical models (Berezin and Marinov, 1977; Gomis et al., 1985; 
Sherry, 1989), leads us to examine the interrelationship of symplectic and 
co-symplectic geometries. In the theory presented in this paper, we accom- 
plish this by introducing into the same cotangent bundle simultaneously 
both symplectic and co-symplectic structure. This leads to the notion of  
associated co-symplectic structures. From a different point of view, the co- 
symplectic structure can be interpreted as a special kind of Riemannian 
structure. The compatibility problem then coincides with the problem of 
introducing a natural connection into the symplectic geometry relative to 
which the symplectic structure becomes covariantly constant. The conditions 
under which this can be done are derived. 

The model on which initially, we base our development is that of the 
symplectic geometry. We begin, therefore, in Section 2, with a brief review 
of some important aspects of that structure. This enables us to review a 
construction that we apply in Section 3 to the co-symplectic case. In Section 
3 we define a co-symplectic structure on the cotangent bundle T * X  of an 
arbitrary manifold X. This is done by appeal to a partition of unity. We 
offer also an alternative interpretation of  this construction at the end of  the 
section in terms of Hessians of local phase functions for waves on the 
configuration space. In Section 4, we define associated symplectic and 
co-symplectic structures and show how a new co-symplectic structure can 
be obtained from a given one and an arbitrary Riemannian structure on 
the configuration space. In Section 5 we show how real symplectic and 
co-symplectic structures both arise naturally in the context of complex 
symplectic manifolds. 

We examine in detail associated symplectic and co-symplectic struc- 
tures, first the two-dimensional case in Section 6, and then the general case 
in Section 7. Some implications of  these results for polarizations in geometric 
quantization are considered in Section 8. 



Associated Symplectic and Co-symplectic Structures 569  

2. SYMPLECTIC MANIFOLDS 

To set up the theory of  co-symplectic manifolds, we shall imitate the 
methods of  symplectic geometry. It is convenient therefore to review first 
some of the basic features of  symplectic geometry. This will also give us 
opportunity to establish our notation. 

Let M be a manifold of even dimension, and set n =�89 M. A 
symplectic structure on M is a two-form w ~ A2(M) that is nondegenerate 
and closed. Thus, 

v l w = O C : > v = O  V v ~ T M  

and 

dw = 0  

The two-form oJ is called a symplecticform, and the pair (M, w) is called a 
symplectic manifold. 

The fundamental theorem of symplectic geometry 3 is the theorem of 
Darboux, which allows us to introduce local canonical coordinates {q/, p~}, 
i =  1 , . . . ,  n, in which 

w= ~ dp, A dq i (1) 
i = l  

Thus, a local chart can be found around each point m of M in which w 
takes its canonical form throughout the charted neighborhood. This means 
that any symplectic form is equivalent locally to the standard symplectic 
form 

~ = ~ dpi ^ dq i 
i=1 

on T*~ n ~ ~ x (~")*. In this sense, every symplectic form can be said to 
be covariantly constant and every symplectic manifold can be said to be 
locally fiat. 

Now let X be any manifold of dimension n. Then the cotangent bundle 
T * X  over X admits a symplectic structure in a natural way. The naturalness 
of  this structure is emphasized by the fact that it can be defined globally 
by a standard procedure without recourse to local coordinates. This is the 
method followed in Abraham and Marsden (1978, pp. 178-179). It is more 
useful for our purposes, however, to consider how this construction might 
be carried out in terms of  local coordinate charts. 

3Excellent treatments of symplectic geometry can be found in Guillemin and Sternberg (1977, 
1984), Abraham and Marsden (1978), Woodhouse (1980), and Liebermann and Marie (1987). 
We have made extensive use of these works in our treatment here. 
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Let ~ be an atlas on X, and ( U, {xJ}) a local coordinate chart. A local 
coordinate chart {x ~, ~} on T * U c  T * X  can be constructed in a natural 
way (Abraham and Marsden, 1978, pp. 46-47). Coordinate charts of this 
kind are called natural coordinates. Now let (V, {yi}) be another local chart 
on X such that U n  V #  ~5, and let the natural extension of (V, {yi}) to a 
chart of T * V c  T * X  have coordinates {y~, *h}. The charts U and V are 
related on the region U n V of overlap by a local coordinate transformation 

- 1  ~bvu = ~bv ~ 4b u I~,:(u,~ v) which is of the form 

y ' = y ' ( x ) ,  i, j =  I , . . . ,  n (2) 

This transformation in turn will induce a local change of coordinates on 
T ' X ,  given by 

Ox j 
' = . (3) y =y~(x),  ~i r/jay, 

Denote transformation (3) by ~. Then in the region U n V of overlap of 
the coordinates, the coordinate basis of T(T* U) transforms under ~ accord- 
ing to 

0 ay: ~ 02X k 
~)*: OX'--'7 ~ OX"'~ ~yj"~-~k OY ~ OY j Ox ~Oyt OOrb (4) 

O Ox ~ O 
~ , :  O--~i~-->Oy---70---~j (5) 

Similarly, the coordinate basis of T*(T* V) transforms according to 

~*: dyi~--~ OY' dx j (6) 
Ox: 

02x k Oy t , Ox j " 
~*: d'o, ~-> ~k o ~ y  , ox~ dXJ +-~y~ d~j (7) 

The Jacobian of  this transformation, in block diagonal form, is thus 

Ox j 0 

l ~k-O-Syt'-~y ' ox' \Lox'J 

We now introduce the local symplectic form 

to u = ~ d,~i A dx i 
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in each local chart U of  the atlas M. Then, on Ufn V, the local forms to u 
and to v will coincide, 

wulv,~v=tovlu,~v (9) 

This property is guaranteed by the symmetry of  the partial derivatives 

02x k 
- . . . . - y  

Oy' Oy ~ 

and is the feature that allows us to extend the local symplectic structure in 
a natural way to cover the entire manifold. We can therefore define the 
natural symplectic structure co on T*X by requiring that in each local chart 
U of the atlas s4 we have 

wl u =tou (10) 

a demand that is consistent by virtue of  (9). 

3. CO-SYMPLECTIC  STRUCTURE ON T*X 

We now apply a construction analogous to the one described in Section 
2, to the co-symplectic case. Let M be an atlas on X, and (U, {xl}) a local 
coordinate chart that has been extended to a natural coordinate system 
{x i, ,~i} of T*U c T*X. Define 

o -U= ~ (d~i|174 (11) 
i : 1  

Thus, o -u is the local co-symplectic structure in canonical form (Frescura 
and Lubczonok, 1990). o "u is evidently a Riemannian tensor of  signature 
zero on T*U. It has components  

Here In is the identity n x n matrix, and S is the standard co-symplectic 
matrix. 

The extension of o -u to the other local charts in the atlas M of X does 
not proceed as smoothly as in the corresponding symplectic case. This is 
due to the fact that the matrices (8) do not preserve the components  of  tr u. 
We therefore have to use a partition of  unity to glue together the local 
structures {or u} to obtain a global co-symplectic structure on T*X. 

Let X now be a paracompact  manifold, and {(U, XU)}U~A a locally 
finite atlas on X. We take a partition of unity {Ou}u~A subject to the covering 
{ U}U~A of  X. Denote the induced atlas on T*X by {(U*, X*)}U~A. Given 
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a coordinate chart (U*, x*),  where x* ={xt : ,  ~/u}, we define the local 
co-symplectic tensors {o-t:} by (11). Now put 

o-= E Ot~t: (13) 
U ~ A  

o- is evidently a smooth symmetric tensor on the manifold T*X. 
We shall show that or is nonsingular and with signature zero. The proof 

is based on the following simple observation. Let 

o(A &) 
where A is any n • n nonsingular matrix. Then 

~rS~ ( ATB+BTA 
(14) 

where S is the canonical matrix (12). Now let x~ V e X ,  where V is an 
open neighborhood of x such that only a finite number of local charts 
U1, U 2 , . . . ,  Us intersects V. Then 

o-Iv= 0vjo-  (15) 
j = l  

We now evaluate the components of o-% on the intersection U~ c~ Ui in the 
coordinates {xt:~} of Ui. From (8) and (13) we obtain 

~ I~ ~ )  (16) 

From (14), with 12 taken to be the Jacobian matrix (8), we see that the 
matrix Suj(x)s is symmetric. Thus, in every coordinate chart ( U*, x*), the 
tensor or has the form 

\ I .  (17) 

where St:(x)~ is a symmetric n x n matrix that depends linearly on ~:. From 
this it is evident that the tensor o- on T*X is nonsingular and with signature 
zero. We have thus proved the following result. 

Proposition I. If X is a paracompact manifold, then on the manifold 
T*X there is a co-symplectic structure o- such that, in every chart { U*, x~} 
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induced from a chart { U, Xu} on X, 

(Su(x)~ Io) (18) 
~=\ I. 

The above construction of  a co-symplectic structure ~ on T*X admits 
also another interpretation. Given a coordinate chart {x i, ~} on T*X 
induced from X, we define the function f :  U x (~")*  ~ T*X by 

fu(x, ~)= ~, Xi~i 
i - -1  

Clearly, 

0 Hess fu(x,~)=(i ~ In) 

Thus, or(x, ()  arises as a result of  glueing together Hessians of  local f v  
functions. This reinterpretation is not inconsequential. The functions 
fv(x, ~) and their Hessians arise in a natural way in the theory of  waves, 
Fourier transforms, and quantization. They are also associated in a natural 
way with a co-symplectic structure on cotangent bundles, as shown above, 
and in this way they play a fundamental role in the application of  co- 
symplectic methods to the aforementioned areas. The development of these 
ideas will be reported in detail in a later publication. 

4. ASSOCIATED SYMPLECTIC AND CO-SYMPLECTIC 
STRUCTURES 

For applications to systems with spin, in which both symplectic and 
co-symplectic structures occur, it is useful to interrelate symplectic and 
co-symplectic geometries. With a slight change of interpretation, the co- 
symplectic geometry can be regarded as a Riemannian geometry on a 
2n-dimensional manifold in which the fundamental tensor has signature 
zero. Thus, to interrelate symplectic and co-symplectic geometries is 
equivalent to uniting the symplectic geometry with a particular kind of  
Riemannian structure. Seen from this point of  view, the idea is not entirely 
new, and should be compared with attempts to introduce a natural connec- 
tion into symplectic geometry. See, for example, Hess (1980), Carifiena and 
Ibort (1984), and the references quoted in these papers. 

We propose the following terminology. 

Definition I. A Riemannian structure (X, ~r), where cr U is nonsingular, 
symmetric, and of signature zero, will be called a Riemannian hyperbolic 
structure (Porteous, 1969). 
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Definition 2. Let (M, w) be a symplectic structure on a manifold M. 
We say a Riemannian hyperbolic structure (M, o-) is a co-symplectic structure 
associated with (M, to) if  for each point x ~ M there are canonical coordin- 
ates (p, q) about x (i.e., to = dp ^ dq), in which the tensor o- has the form 

where G is an appropriate  symmetric n x n matrix. If, moreover,  

G(q, p) = G(q)p (20) 

where G(q)p is a linear function of the variables p, then we shall say that 
(M, ~r) is a co-symplectic structure cotangentially associated with (M, to). 

Now let X be any manifold. Then the manifold T * X  carries a natural 
symplectic structure w. Given any co-symplectic structure o- on T * X  associ- 
ated with ( T ' X ,  w), one can generate a new co-symplectic structure 6- from 
the pullback ~ = 7r*g of  any Riemannian structure g on X by the canonical 
projection 7r : T* X -> X. Put 

6-= ~ r + ~ * g  (21) 

In a local canonical chart for w, this yields 

6" (G+g 

which shows that 6- is a co-symplectic structure associated with the natural 
symplectic structure on T*X. Note that the metric 6- restricted to the 
submanifold X c T * X  yields g when cr is given by (20), since o- vanishes 
on X. 

In the remainder  of  this article, we shall explore associated symplectic 
and co-symplectic structures. 

5. NATURAL C O - S Y M P L E C T I C  STRUCTURES ON C O M P L E X  
SYMPLECTIC M A N I F O L D S  

A co-symplectic structure arises in a natural  way on a complex symplec- 
tic manifold as follows. Let M be a complex analytic manifold of  (complex) 
dimension 2m, and let oJ be an holomorphic  symplectic form on X. The 
holomorphic  structure on M allows us to define 

o5(~, n) = to(~, ~) (23) 
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where ~ is the complex conjugate of  7/, and ~:, ~7 ~ TxM. Denote 

toR(~, 7 ) =  ~{o5(~, n)} (24) 

and 

,o,(~, n)= 3{o5(#, n)} (25) 

By a change of interpretation, we can regard M as a real 4m-dimensional  
manifold. Then the real part  wn of  o5 defines a symplectic structure on M 
in a natural way, while the imaginary part  OOl defines a co-symplectic 
structure. More particularly, consider a local chart of  canonical coordinates 
for the symplectic structure w. In terms of  these coordinates, 

(0 
w = - I , ,  (26) 

where I is the m x m identity matrix. I f  we now set 

~=(u+iv, u'+iv') 

~7 =(p+ iq, p' + iq') 

we get 

~o,(((u, v), (u', v')), ((p, q), (p', q'))) 

0 -Ira  0 q (27) 
--((u,v),  (u',v')) -I,. o o~[[p"~] 

\ I~  0 0 0]\~,  ]]q' 

It is clear that the bilinear form w~ has signature zero, and hence is 
co-symplectic. 

6. T W O - D I M E N S I O N A L  ASSOCIATED STRUCTURES 

Let M be a two-dimensional manifold. Then a symplectic structure on 
M is defined by any nonsingular 2-form 

0 
o~(x) = - a ( x )  



576  Frescura and L u b c z o n o k  

where a(x) is a 1-density. A co-symplectic structure (M, g) associated with 
(M, ~o) has the following form in canonical coordinates: 

(gu(x))=(G(lX) 10) (28) 

We note in passing that the Riemannian hyperbolic tensor (28) provides a 
two-dimensional model of  relativity that is of  no small interest in its own 
right. 

We now evaluate the components Fjk of the connection for gu, and its 
curvature, in a local coordinate system. We have 

g = - I  

gll =0  

g12 = g21 = 1 

so that 

and 

g22 = - - G  

r h  = -�89 
1 

F~, =�89 Ga2G) 

2 2 F12=F21 ={a2G 

r ~  = o 

The scalar curvature of  gu is thus 

K 1 2 = -~02G (29) 

where 0~ = O/Ox i. Note that, locally at least, any arbitrary function can be 
taken as the scalar curvature of  some gu. 

If gu defines a co-symplectic structure cotangentially associated with 
(M, ~o), then G is a linear function of x 2 and its scalar curvature vanishes. 
In particular, let X be a one-dimensional manifold and ( U, q) a local chart 
on X. Then in the natural coordinates ( U*, {q, p}) induced on T*X we get 

and consequently the scalar curvature of cr vanishes. 
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7. ASSOCIATED STRUCTURES IN GENERAL 

We shall now evaluate the Christoffel symbols of g given by (19). Let 
1-< a,/3, y-<n and n + l < - i , j ,  k<-2n. Then 

g ~  = G,~ 

g a i  = g ia  = (~i,o~+n 

g i j  = O 

and 

Hence, 

o~ 1 

o~ c t  F r ~ = F ~ j = 0  

g ~  --0 

g ai = g i~ = tV,~*. 

gC~+n,~*n __ __r';r 

2 n  
i 1 r~r ~ C~i_.j_n0jQ~ (3o) 

j ~ n + l  

F~k = 0 

Suppose now that G~r = G~r Then 

F ~ ,  = -�89 O~+, Gr ) q "~ 

ot  re  - -  o l  F ip=F ~ - F  q = 0  

2 n  

- 2  ~ G . . . . . . .  , (O ,G~p)q 'q~162  . . . .  - G ~ , i - ~ )  (31) 
S = n + l  

F~k = 0 

Due to the simple form of the inverse matrix to (g~b), we obtain polynomial 
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formulas  for the curvature tensor.  We have the fo l lowing  cases: 
1 2 1 2 R ~  ~ -~0~,~+~ G ~  = + g0/3.a+. G,~, 

+�88 Z [(O~+~ 
w = l  

1 2 
Ria~o ~ = - R,~ioff = -- 50 i.v+n G~o) 

R~13k ~' = 0 

R,~/3./'-�88 L [(a,~a,-..p)(Oo+nat~.) - (a/3G,_.,.)(op+,,G,.:)] 
p=l 

2n 

+1 Z G, . . . .  _.(a~:Gt3~-a~,,G~,~,) 
s = n + l  

2n 

+ 1  E O.Go,. ,- , ,(oi3ar . . . .  +o~,G~ . . . .  -O._ , ,Gr 
s = n + l  

2 n  

+ E ~ . . . .  j_.ojo.~,) 
j = n + l  

2n  

- � 8 8  ~ OsGe.t_,,(Oo, G v . . . .  +O.yGo.~_,,-O._,,G,,,r 
s = t I + l  

2n  

+ Y. G .... .i_,,a:Go,~,) 
j = n + l  

i i ( . . . .  

w = l  \ s = n + l  

w = l  \ s = n + l  

- - 1 / . 2  ~ 2 2 2 

Ru~ ~ = R~,j ~ = R,~u ~ = 0 

1 2 4 2  ~ "~ ..~_ 1 

T = l  
2 n  

1 2 e a f 3 k l = ~ o c ~ . k G . , l _ n _ _  1 ~ 2  / ~  ._1_1 

s = n + l  
2n 

1 - z  E (O.Gt~,t-.)(OkG. . . . .  ) 
s~rl-bl  

1 2 
R i a k  l = - -  R = i k  I -----~0 i,k G o t , l - n  

Ru,~ k = RUk ~ = R J  = 0 

2 n  

y, GI-n,s-nO i,s G ~  
s = n + l  

(0.Q.,_.)(0,G~.s_.) 
s = n + l  

(OsG.d-.)(OkGt3 . . . .  ) 

(32) 

(33) 
(34) 

(35) 
(36) 

(37) 

(38) 

(39) 

(40) 
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It is evident from (30) and (32)-(40) that for dim X - - 2 ,  the co-symplectic 
Riemann tensor on T * X  in general has nonzero curvature and Ricci tensors. 

Next we evaluate the covariant derivative of  the symplectic tensor in 
canonical coordinates. We have 

V,Wb~ = 0 (41) 

if at least one of  the indices a, b, c belongs to n + 1 , . . . ,  2n. Also 

2n 

j = n + l  
(Grj_,O:G.~ - Gg.:_,OjG. v) +O~G.r -arGot3 (42) 

We thus have 

Proposition 2. The symplectic structure (M, o)) is covariantly constant 
with respect to the Christoffel connection of  a co-symplectic structure (M, ~r) 
associated with (M, w) if and only if 

2n 

�89 ~ ( G ~ j _ , O j G ~ - G ~ . : _ , O j G ~ ) + O ~ G ~ - O ~ G ~ = O  (43) 
j = n + l  

We now consider the equations of geodesics. We have 

d2x ~ dx ~ dx v 
O= dt 2 t~,r dt dt 

13#Z, 

d2x i dxJ dx ~ 
O= dt +jL~ OjG.,~_. dt dt 

d x  ~ d x  ~ 

+�89 ~ Y. Gi . . . . . .  O,G~ dt dt 
or s 

o~#-,8 

il d x l 3 ~  2 

dx ~ dx ~ 
+�89 Z (a.G~, ,- , ,+a~G.. i - . -a,- .O.t~)  dt dt 

a,13 

, 

1 d x  ~ 2 

Note in particular that the curves 

(45) 

X a = C a 

x~=m~t+n i 
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where a = 1 , . . . ,  n and i = n + 1 , . . . ,  2n, are geodesics. I f  we are working 
on the cotangent bundle, this observation yields the following results. 

Proposition 3. Let ( T ' X ,  ~r) be a co-symplectic structure associated 
with the standard symplectic structure on T*X. Then the submanifold 
X c T *X  is a geodesic submanifold,  i.e., for any x, y ~ X, x and y being 
sufficiently close to each other, there is a geodesic of  ( T ' X ,  o-) in X which 
joins the points x and y. 

8. CO-SYMPLECTIC  STRUCTURE AND P O L A R I Z A T I O N  

Let (M, o-) be a co-symplectic structure on a manifold M. Consider a 
coordinate system (U, x) on M in which tr is given by (19), that is, 

G 

I f  x = ( x  ~ . . . .  , x  2") and l<-a<-n, n+l<-i<-2n, then the submanifolds 
Vc(x), with c = ( c l , . . . ,  c"), given by 

x ~ = c a (46) 

define a local geodesic foliation on U. The connection induced by V on Vc 
is fiat. These are straightforward conclusions from equations (30), (44), 
and (45). 

We shall now demonstrate  that if (M, tr) is associated with a symplectic 
structure (M, to), t h e n  this local geodesic foliation extends to a global 
geodesic foliation. Suppose ( U, x) and ( V, y) are two overlapping canonical 
charts. Then the transition function preserves both w and cr. Construct  the 
mixed tensor 

The tangent spaces TxVc are then clearly the eigensubspaces of  T corre- 
sponding to the eigenvalue -1 .  Since T is preserved under the local coordin- 
ate t ransformation x-~ y, which is guaranteed by the fact that (U, x) and 
(V, y) are canonical, its eigensubspaces will also be preserved. Hence,  it 
follows that the local geodesic foliation (46) extends to a global foliation. 

The tensor T has a second n-dimensional eigensubspace V'c(x) corre- 
sponding to the eigenvalue +1. This subspace can be parametrized by 

V ' ( x ) =  ~ T x M ; ~ =  - ~ G  ~'~)~9~n (48) 
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Since G is symmetric (Frescura and Lubczonok, 1990), the subspace V'c(x) 
is a Lagrangian subspace for every x ~ U. An easy calculation shows that 
V'c(x) is also a co-Lagrangian subspace, i.e., a maximal isotropic subspace 
of  or. The distribution x-> V'c(x) is not always involutive, even in the case 
when M = T*X. 

Suppose now that to is covariantly constant with respect to the connec- 
tion 7,  so that equation (43) is satisfied. Then, clearly, the tensor T, and 
thus also the distributions {Vc(x)} and { V'~(x)}, are covariantly constant. 
This gives the following result. 

Proposition 4. Let (M, to) be a symplectic structure on a manifold M, 
and (M, o-) a co-symplectic structure associated with (M, to). The distribu- 
tion x ~ Vc(x) is a geodesic, Lagrangian, and co-Lagrangian foliation on 
M. The metric connection defined by or, restricted to the leaves of  this 
foliation, is flat. The complementary distribution x--> V'c(x) is Lagrangian 
and co-Lagrangian. If  to is covariantly constant with respect to the metric 
connection, then the distributions V~(x) and V'~(x) are parallel. 

We shall now consider a special case that is of  some importance for 
geometric quantization. Suppose the foliation Vc(x), where x ~ M, admits 
a section Q that is both Lagrangian and co-Lagrangian. 4 Then, by a straight- 
forward application of  Proposition 4.4.1 of Woodhouse (1980) to our 
polarization, we obtain the following results. 

Proposition 5. Let P = { V~(x)}, x ~ M, be the polarization, and let Q ~ M 
be a Lagrangian and a co-Lagrangian manifold which is also a section of  
P. Then there is a natural canonical diffeomorphism p : U --> M, where U is 
a neighborhood of the zero section in T*Q endowed with its natural 
symplectic structure, such that: 

1. p-l(Q) is the zero section in U c  T*Q 
2. p*(P) is the vertical polarization of  U 
3. p . ( t r )  defines a co-symplectic structure on U c T*Q associated with 

the natural syrnplectic structure on T*Q. 

Moreover, if the leaves of P are geodesically complete, then U = T'Q, and 
p identifies (M, to) with the natural symplectic structure on T*Q. 

The proof  of this proposition follows from the fact that P is convex. 

9. CONCLUSION 

We have introduced a co-symplectic structure on the cotangent bundle 
T*X of an arbitrary paracompact  manifold X, and defined the co-symplectic 

4Q is a section of  a foliation if it intersects each leaf of  the foliation in exactly one point. 
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structure associated with a given symplectic manifold (M, to). In general, 
to is not covariantly constant with respect to the co-symplectic connection 
for arbitrary associated co-symplectic structures (M, tr). The necessary and 
sufficient conditions for this to be the case are given by equation (43). In 
the case M = T*X for some arbitrary manifold X, X considered as a 
subspace of T*X is a geodesic submanifold. 

The pair (M, to) and (M, tr) define a global Lagrangian and co- 
Lagrangian geodesic foliation on M. This foliation and its complementary 
distribution produce the polarization of the symplectic manifold (M, to) 
that is so fundamental to geometric quantization. The simultaneous presence 
of a Riemannian structure, in the form of the associated co-symplectic 
geometry, may prove to be important in putting together the bosonic and 
the fermionic aspects of quantum theory. 
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